
MEng Individual Project Report

Imperial College London

Department of Computing

Mining Semantic Information from Software
Development Artifacts

Author:
Joe Rackham

Supervisor:
Dr. Robert Chatley

June 14, 2021

Abstract

In this project we present an investigation into leveraging Natural Language Processing and Ma-
chine Learning for the automatic extraction of semantic insights from Software Development Arti-
facts. We survey existing techniques and propose extensions and modifications. We then construct
a workbench for experimenting with these techniques on both data-sets and real projects.

In a Software Development Project both the project repository itself and the corpus of digital
communication exchanged between team members are sources of information that could be useful
to a developer working on a new task. However as these grow in-size it becomes intractable for a
person to manually search through everything. We investigate to what extent we can use Artificial
Intelligence to extract this information automatically instead.

Using the workbench we evaluate the extraction techniques to show how our methods are suc-
cessful in extracting information that would assist a developer.

Acknowledgements

I would like to thank Dr. Robert Chatley for his support throughout this project. His guidance
has been instrumental in producing the work that follows.

I would also like to thank my parents Chris and Kerry, and my siblings Josh and Jade for their
love and encouragement throughout my education.

Lastly I want to thank Ellie, Roxy, Julie, Vicky and Jack for their friendship, camaraderie and
willingness to be used as a rubber duck throughout University.

Contents

1 Introduction 4

2 Background 5
2.1 How Software Developers Work . 5

2.1.1 How do Software Developers Communicate? 5
2.1.2 How do Software Developers Find Code? 6

2.2 Vector Space Based Indexing . 7
2.2.1 Basic Indexing . 7
2.2.2 What Constitutes a term? . 7
2.2.3 Weighting . 7
2.2.4 Latent Semantic Indexing . 8

2.3 Mining Source Code for Semantic Information . 8
2.4 Mining Digital Communication . 8

2.4.1 Social Dynamics in Communication . 8
2.4.2 Identifying Individuals . 9
2.4.3 Linking Emails to Source Code . 9
2.4.4 Disentangling Slack Conversations . 10
2.4.5 Clustering Emails . 11

2.5 Cognitive Load . 11
2.5.1 Cognitive Load Theory . 11
2.5.2 Cognitive Load in Software Development 11

2.6 Existing Tools . 12
2.6.1 Mylyn (formerly Mylar) . 12
2.6.2 Kite and Kite Copilot . 12
2.6.3 Facebook Aroma . 13
2.6.4 Guru . 13

2.7 Discussion . 14

3 Survey of Techniques 15
3.1 Project Setup . 15

3.1.1 Email . 16
3.1.2 Slack . 16
3.1.3 Git . 17

3.2 Experiment: Disentangling Slack Conversations . 17
3.3 Experiment: Source Code Topic Clustering . 18

3.3.1 Extracting Vocab from Source-Code . 18
3.3.2 Text Analysis for Topic Extraction . 18

3.4 Clustering . 19
3.5 Experiment: Individual Grouping . 20
3.6 Experiment: Linking Source Code to other artifacts 20
3.7 Testing & Ensuring Correctness . 22

4 Application of Techniques 23
4.1 Message Untangling . 24

4.1.1 Training and Evaluating . 24
4.1.2 Applying to Author’s Projects . 25

4.2 Topic Extraction . 26

2

4.2.1 Capturing Co-Edit Behaviour . 26
4.2.2 Aiding Understanding . 29

4.3 Individual Grouping . 33
4.4 Linking Source Code to other Artifacts . 33

5 Summary of Results 36

6 Prototype Tool 38

7 Ethical and Legal Issues 40

8 Conclusion 41
8.1 Contributions . 41
8.2 Future Work . 42

3

Chapter 1

Introduction

In large-scale software development, the information that would be necessary or useful to com-
plete a particular task may be split over a range of platforms. The code-base itself is obviously a
source of information but further advice or information might have been given over Slack, Email,
Microsoft Teams or any of a number of digital communication tools. The programmer may need
to consult the language documentation and, furthermore, completing the problem in a satisfactory
way may mean following an internal set of rules disseminated through email or documentation.
These problems are only amplified in organisations with heavy use of remote working or inter-
national collaboration where asking someone for a piece of information or an elaboration isn’t as
simple as walking across the office.

This places a strain on a software developer both in terms of their time and their cognitive load.
Because there could be valuable information across all these sources it takes a long time before
a developer feels abreast of a task they’re working on [1]. It’s estimated that 60% of software
maintenance is spent on comprehension: understanding how code works, finding out who made
previous decision and why they made them, and what practices any modifications need to be follow
[2]. Furthermore, developers often switch between multiple tasks a day meaning this process has
to be repeated frequently [3]. Keeping everything relevant in their head takes up mental effort that
could be devoted to implementing a solution. The alternative is not to look at everything and risk
missing out on time-saving advice or making a mistake that needs to be fixed later on.

The goal of this project was identifying and evaluating techniques for mining the semantic infor-
mation contained within these artifacts with the goal of generating insights that would be useful
to a developer. The report presents an investigation into several tasks under this banner including
identifying communication artifacts about part of the source code and extracting topics useful in
understanding a code-base. Techniques are presented to accomplish these tasks which leverage
Natural Language Processing and Machine Learning. Furthermore, this report outlines the con-
struction of a ‘Workbench’ to facilitate experimentation on data-sets and real repositories. The
workbench is used to evaluate both established techniques and proposed extensions, modifications
and alternatives.

Report Layout

Chapter 2 outlines some background research into how Software Developers work as well as es-
tablished techniques for mining textual artifacts and communication. Chapter 3 outlines the
construction of the ‘Workbench’ and details the full range of techniques contained within. Chapter
4 then details applying the Workbench to some of the authors past projects and contains an eval-
uation of the output produced. Chapter 5 summarises the results obtained from all experiments.
A prototype version of a real tool built for developers which uses the methods discussed to provide
useful insights is described in Chapter 6. Chapter 7 outlines how the work for this project was
conducted in an ethical and legal way and Chapter 8 concludes the report with a summary of the
work, its contributions, and some potential directions for future work.

4

Chapter 2

Background

This chapter outlines background research relevant to the project as well a summary of some
existing tools available which aim of assisting providing insights automatically to assist software
development.

2.1 How Software Developers Work

2.1.1 How do Software Developers Communicate?

Software development is a highly collaborative exercise, but a large proportion of this collaboration
is not done face to face. The historical choice of remote, asynchronous communication was email
but the rise of social media technologies as well as the feasibility of teleconferencing have shifted
this.

The business collaboration platform, Slack is one of the most popular new communication op-
tions amongst software development teams. Founded in 2013, at time of writing Slack reports
790,000 software developers active daily [4]. Slack allows for communication within channels, that
team members can join, leave or mute as they wish. However, Slacks specific popularity in the
Software Development community is likely due to it’s easy integration with other tools developers
use, GitHub, Jenkins etc. Slack is especially popular in virtual teams where it provide a forum
more informal conversations that can’t take place face to face. [5, 6]

Coronavirus has lead to a drastic increase in remote working and software development teams
have have relied on digital communication technologies to preserve collaboration. The effects of
the pandemic will obviously abate with time but many spectators predict that it will lead to a
wider acceptance of remote / flexible working in the future. [7, 8]

To help prioritise which platforms to investigate we wanted to know how communication was
split up in modern development teams. Previous research we found was several years old or
that focused on the adoption of a specific technology so, instead, we conducted my own survey
of industry software developers. Data can be explored further via an Interactive Dashboard at:
https://serene-stream-63388.herokuapp.com/ 1

Figure 2.1 displays the percentage of participants who had used various communication plat-
forms. We can see that although Slack is used by a significant proportion of developers, email
remains more widely used. Slack is however, a lot more popular than competitor, MS Teams.
Unlike some previous work, teleconferencing and from face to face were treated a separate forms
of communication. We see that, although only approximately 60% of participants had worked on
a project with face to face communication. This is most likely a result of the COVID-19 Pandemic.

Figure 2.2 displays which of the tools participants felt were used most frequently. Here the shift
away from email is easier to see; it accounts for the smallest proportion of votes despite it’s wide

1The Web-App may take a couple of minutes to load

5

https://serene-stream-63388.herokuapp.com/

adoption. Around 45% of those surveyed said that Slack or Teams was where most of the commu-
nication took place.

Figure 2.1: Percentage of Surveyed Programmers who had used various Communication Tools

2.1.2 How do Software Developers Find Code?
One of the most frequent developer activities is code search. Sadowski et al. present a case study
into how Software Developers find code over a large number of projects at Google. The following
insights are presented in the case study: [9]

• Searches were conducted for the expected reasons; finding out why code was behaving the
way it was and where it was instantiated. However, users also used code search to answer
questions about the meta-data like who was responsible for a certain part of the project.

• The most frequently identified reason for search was to find examples or sample code. De-
velopers would likely benefit more from seeing documentation that displays the simplest use
case and some usage tips.

• The developers observed had an average of 5.3 search sessions a day with an average of 12
individual searches. These numbers suggest an increase in the use of search when compared
with previous research. A potential explanation was also observed; developers frequently
used code search as a method of navigation, preferring it to using a file explorer.

Code Search is simple and accessible; it just requires using the search box built into the IDE. This
research suggests it is frequently being used for information gathering and navigation rather than
identifying specific code artifacts.

6

Figure 2.2: Which communication tools was used most frequently by surveyed programmers

2.2 Vector Space Based Indexing
One key task related to this project brief is determining what a document (an email, a slack
message, a commit description) is about. Vector Space Based Indexing is a set of Natural Language
Processing Methods designed to analyse the relationships between a corpus of documents and terms
they use.

2.2.1 Basic Indexing
A vocabulary is built of all the terms used across all the documents and for each document a vector
the size of this vocabulary is built. In simple implementations the elements are just the number
of times each term occurs in the document.

The similarity of two documents can then be computed as the angle between the two vectors
representing the documents. This can be used to directly compare items or to build semantic
clusters.

2.2.2 What Constitutes a term?
Standard Natural Language pre-processing techniques can be used to edit the list of terms. For
some applications better results might be achieved by being case-insensitive, ignoring stop-words
etc. ‘Stemming’ is a modification to this method presented by Antoniol et al. when linking emails
to documentation [10]. Terms that share a root word (ie. model and models) are grouped together.

2.2.3 Weighting
Instead of just pure counts more sophisticated metrics can be used to build the document vectors.
One widely used metric is ‘Term Frequency / Inverse Document Frequency’ (TF-IDF).

tfc,n =
dc,n∑C
i=1 di,n

idfc = log |D| − log {d : tc ∈ d}+ 1

The significance score for an individual cell is then computed as follows:

tfidfc,n = tfc,n · idfc

By combining the local ‘term-frequency’ and global ‘inverse document frequency’ this metric mit-
igates the contributions of terms that appear frequently in a document simply because they are
used frequently everywhere.

7

2.2.4 Latent Semantic Indexing

Latent Semantic Indexing is an extension to the basic method where ‘Singular Value Decomposi-
tion‘ is applied to the Document-Term matrix. SVD reduces the number of rows whilst preserving
the relationship between columns as much as possible. The intuition is that the more compact
representation will capture the topics present in documents not the individual terms.

2.3 Mining Source Code for Semantic Information

Code isn’t written in Natural Language and programming is often thought of as a human-machine
communication task; the programmer is ‘telling the computer what to do’. However, developers
also communicate with people when coding. Comments and Identifier names are ignored by auto-
mated tools but programmers add them to convey to other developers or their future selves what
code is doing and why they made certain decisions.

Kuhn et al. show how this text could be used to extract semantic information from Source Code.
They outline a method for, using only identifiers and comments, clustering source code into groups
that are then named with the terms that best describe them. They use Latent Semantic Indexing
to build vectors for each file which can then be clustered. The similarity of each term to each
cluster is then computed and the top n are chosen to describe the cluster.

Let t be a term and C be the set of clusters

rel(t, c) = sim(t, c)− 1

|C|
∑
cn∈C

sim(t, cn)

sim(t, c) =
1

|c|
∑
cn∈c

sim(t, cn)

Determining which files belong together is subjective so evaluating the method requires human
inspection and therefore the number of case studies outlined is limited. However for these studies
Kuhn et al. report sensible clusters being formed. [11]

2.4 Mining Digital Communication

There has already been much work done in the area mining digital communication for the kind of
insights useful to this project. As a function of age there is more research into email but work has
also been done into Slack and similar platforms.

2.4.1 Social Dynamics in Communication

Bird et al. present an investigation into the email communication within a large, long-running soft-
ware development project. By examining who sent messages to each other they were able to build
a social network for the project (see Figure 2.3); they highlight several dynamics of the developers
captured in the graph. Firstly there was a positive correlation between connectedness and produc-
tivity and conversely that a high level of source code activity was a good indicator of social-status.
From the graph one can identify pairs of people with longstanding good communication that we
could infer, work well together. [12]

Maglio et al. investigated whether these kinds of social networks could aid in finding experts on a
particular topic, albeit within teams that weren’t made up of Software developers. Emails about
a particular topic are clustered together and graph is built out of all the senders and recipients. A
modified version of the HITS (Hyperlink Induced Topic Search Algorithm) is used to assign every
person a ’repute’ and ’resourcefulness’ score. The repute score gives a ranking of the experts of a
particular topic. This approach was compared to a simple content based approach which ranked
experts based on how many emails about the topic they had sent. The ground truth ranking was
gathered by asking team members to rank their colleagues. The HITs based algorithm consistently
matched this ranking better. [13]

8

Figure 2.3: Section of social network graph generated in [12]

2.4.2 Identifying Individuals
If within one project multiple different tools and communication platforms are used the same indi-
vidual may appear under multiple different aliases. Often these will be easy for a human to group
(eg. jrackham, joe.rackham and jar17) but non-trivial for a computer to cluster.

Bird et al. presents a clustering algorithm for email addresses belonging to the same person. From
each email pair is generated of the email address any name included in the header.

<"Joe Rackham", "jar17@ic.ac.uk">

For each distinct pair of pairs a measure of similarity is computed using the Levenshtein distance
between the various components of both users. This process was applied to the Apache developers
mailing list and resulted in few errors. The same approach can also be applied to users in a Version
control system. Bird et al. don’t discuss the prospect of clustering users across different systems
but the method would be simple to apply as long as systems provided an email and username for
individuals. [12]

2.4.3 Linking Emails to Source Code
Linking emails, which are primarily written in free-text, to the code artifacts they discuss is a non-
trivial problem. With readability in mind software developers are encouraged to name functions
and classes using dictionary words, but this makes it difficult to distinguish someone referring
to a code artifact from someone simply speaking. Bacchelli et al. present several techniques for
establishing a link between an email and a source code class: [14]

Linking Emails to Classes

Several variations of lightweight ‘grep-like‘ methods have been devised where the emails are scanned
for the appearance of certain words or elements. Building a link wherever a word or compound word
used in the email also appears in the code-base leads to high recall but low precision. To improve
precision when dealing with compound words, a link is only built where the compound word isn’t
itself a dictionary word (for example we would build a link for TreeRoot but not TreeHouse). To
improve recognising when single words are referencing a class the best results have been achieved
by requiring that some package information is also given:2

(.*) (\s|\.|\\|/) <packageTail> (\.|\\|/) <EntityName>
((\.(java|class|as|php|h|c))|(\s))+ (.*)

This approach performs well for Java and similar languages but C doesn’t have packages and in
some languages it isn’t common to use compound-word class names. Higher recall can be achieved
looking for capitalised words surrounded by spaces or punctuation:

2Regex reproduced from Bacchelli et al. [14]

9

(.*) (:punct:|\s)+ <EntityName> (:punct:|\s)+ (.*)

These approaches are simple to implement and fast. However links aren’t ranked and performance
degrades as the code bases grows.

Alternatively Vector Space Based Indexing can be used (see Section 2.2). The email corpus is
put into a vector space and then the vocabulary is used to build a vector representing the source
code. No terms are added at this stage so the vocabulary doesn’t get bloated with code keywords.
We can then compute the similarity between the source code and each email and get a ranked list
of matches.

cos θn =
dTn q

||d||2||q||2

The previous methods fail to deal with ‘Synonymy’; where the email refers to the same artifact in
multiple different ways. Using Latent Semantic Indexing aims to recognise the topics in the email
corpus and deal with this problem. Using the components of the Singular Value decomposition
from the email-term matrix the source code term vector can be transformed into a topic vector of
the right dimension.

Despite being more complex and improving recall, these IR based techniques come at a sharp cost
to precision. In the experiments presented by Bacchelli et al. the lightweight methods achieved a
better overall F-Measure. The later methods, especially LSI were also expensive to compute over
a large corpus.

Linking Paragraphs to methods

Once the link between an email and a class is established, Panichella et al. present a way of linking
paragraphs to individual methods.

Paragraphs more than 10% made up of keywords and special characters are disregarded. Ref-
erences to methods need to contain the word ‘method’ as well as the method name followed by an
open parenthesis. If their are multiple methods with the same name, either because the email was
matched to multiple classes or due to overloading, the paragraph is assigned to all of them.

Panichella et al. also extends this method specifically to use email communication to find a de-
scription for undocumented methods. Firstly they use the English Stanford Parser to disregard
paragraphs not in the affirmative form. Paragraphs are then scored based on the presence of
words like ‘override’, ‘invoke’ and the names of the method’s parameters. Paragraphs not meeting
a threshold are disregarded. Paragraphs are then ranked by textual similarity with the method
they are suspected to be describing. This filtering definitely removes paragraphs that are, in fact,
talking about a method, but the goal is to find only those that can also lead to useful descriptions.

This method is limited in that it only identifies existing descriptions instead of synthesising new
ones from the best candidates. However, Panichella et al. applied their methods on the Lucene
and Eclipse open source systems and found that, where the corpus of communications contained
a useful description, they could mine it with up to 79% precision for Eclipse and 87% for Lucene.
[15]

2.4.4 Disentangling Slack Conversations
The characteristics of communication in Slack and similar systems pose challenges to being able to
effectively mine useful information. People tend to talk more informally and in shorter, incomplete
sentences. More-over multiple conversations might be interleaved within the same channel. [16]

A technique for disentangling IRC messages is proposed by Elsner and Charniak. A maximum
entropy classifier is used to determine whether a pair of messages are related to the same conversa-
tion. The features input includes both analysis of the text (is one a question?, are cue words used?)
and chat specific features (how much time elapsed between messages?) [17]. This technique was
extended by Chatterjee et al. who were specifically looking at Slack conversations. They extended

10

the set of features with Slack specific features like use of emoji or code-block and considered pairs
of messages longer apart. This method improved upon Elsner and Charniak and achieved a high
level of accuracy.

2.4.5 Clustering Emails

Surendran et al. present a method similar to Section 2.3 but aimed at clustering and naming email
topics. The method created clusters that users found ‘useful’ 70% of the time. To create meaningful
cluster names it wasn’t enough to just filter out normal english-language stop words (the, an, we,
etc.). Instead they also needed to filter out domain specific keywords as only allowing noun-phrases
that appear in the subject line of emails to be topic names. Surendran et al. comment that the
same method could be applied to other types of document; success was also achieved with source
code so it would be interesting to also apply it to Slack Messages and other text.

This research raises the question of why users can’t build or at-least give the name for topics
themselves. Why is a fully automatic approach necessary. Firstly, whilst sorting emails as they
come in is do-able these methods can be turned on an existing inbox with a long history. Fur-
thermore Surendran et al. found users were unwilling to pro-actively invest time they could be
spending dealing with the emails contents. [18]

2.5 Cognitive Load

2.5.1 Cognitive Load Theory

Cognitive load theory is based on the principal that humans have a limited working memory. It
provides an explanation for why developers would struggle to keep on-top of all artifacts relevant
to a task and why a tool that automatically generated insights would be useful. For each task, CL
Theory identifies three kinds of load [19]:

• Intrinsic - The inherent difficulty of task. Regardless of presentation simple arithmetic is
less difficult than solving differential equations.

• Extraneous - Comes from how information is presented.

• Germane - Somewhat akin to learning. Germane cognitive load refers to the metal resources
needed to routinize the task being done and commit it to long-term memory.

High cognitive load leads to an increase in errors and other drains on productivity [20]. Extraneous
load is mutable and should be minimised so more mental effort can be devoted to the other two
classes. Software tools can reduce their extraneous cognitive load by having a clear and consistent
interface. Tools should also aim not to unnecessarily distract the user and divert some of their
mental resources.

2.5.2 Cognitive Load in Software Development

There has been some previous work exploring the cognitive load placed on software developers and
it’s impact on them. It however remains true that more effort is devoted to the technical side of
the field and corpus of research into the cognitive side is small [21].

Helgesson et al. present an exploratory case study into causes of software development [1]. They
identified drivers of cognitive load in three key groups:

• Tool - Tools that didn’t make it clear how to use them or what was going on. Tools with
delays or periods of non-responsiveness could also cause loss of focus.

• Information - Participants experienced increased cognitive load when it was difficult to find
information or when it wasn’t clear the information they has was complete or reliable. This
is the primary problem this project is attempting to tackle.

11

• Work process - Cognitive load drivers relating to the teams work processes included things
like not knowing who had responsibility for part of the project or a lack of automated pro-
cesses. It should be possible to work out who is responsible for, or at least knowledgeable
on certain parts of the project based on the communication within the team. This could be
surfaced by automatic extraction to further ease cognitive load.

2.6 Existing Tools

There are several existing tools that fit under the umbrella of ‘AI Development Assistant’ or
‘Assistant for Software Development’ that have been informative look at in researching this project.

2.6.1 Mylyn (formerly Mylar)

Mylyn is a plug-in for Eclipse that provides a ‘task-focused interface’. The motivation behind it’s
creation was reducing the time programmers spend sifting through potentially thousands of code
artifacts to find those relevant to their task and then potentially having to do it again if they switch
task. Mylyn collect user interactions with files to compute a DOI (Degree of Interest) weightings.
This information is then surfaced in the IDE though features like ranking search results by DOI,
views where only active parts of the project are shown and active test runs.

Figure 2.4: Mylyn Task View - The task context for task 124224 is currently being tracked

Mylyn constructs a graph of code elements where each edge and vertex is weighted by DOI. This
is done using an interaction history built from both direct interactions (editing a file) and indirect
interactions (editing the file this file tests). From this a real number score is assigned to every
vertex based on the frequency and recency of interaction. A edge is created when an event in the
history takes the user from one element to another, such as navigation. Edges are weighted the
same as their target element.

Kersten and GC. Murphy present the results of a field study with industry programmers show-
ing they were more productive using Mylyn. Specifically there was an increase in the amount of
time editing code compared with browsing and navigating. The plug-in is also currently used by
thousands of programmers. [22, 23]

2.6.2 Kite and Kite Copilot

Kite is a coding assistant for Python. Specifically offering AI powered code completion and identi-
fying frequently used code snippets. Kite performs well and claims to reduce it’s users keystrokes
by 47%. Kite could clearly improve a programmers working speed but this would only improve
their productivity if they were implementing the correct solution. [24]

12

More interesting, was the sibling product Kite Copilot which follows the cursor and displays rel-
evant and detailed documentation in a separate window (see Figure 2.5). All the information
displayed could be easily found via a search engine but there is clearly value in making it more
immediately available. An obvious limitation of both tools is their restriction to Python. [25]

Figure 2.5: Kite Copilot Following Users Cursor in Python Document [25]

2.6.3 Facebook Aroma
Aroma is a ‘code-to-code’ search tool that uses Machine Learning to find idiomatic usage patterns
in a large code base. This can help users find a way to implement a task that’s not only correct with
respect to the language, but correct with respect to internal rules and best practices. Facebook
emphasises the importance of the tool offering suggestions in real-time so use of Aroma can be a
part of the flow of programming.3 [26]

2.6.4 Guru
Guru is a bot for Slack and browser-extension with the goal of ‘unifying an organisations collective
knowledge’ [27]. When a question is answered users can generate a Guru-Card from the response.
This knowledge shared is then categorised and assigned to a group or person now responsible for
keeping it up to date. Users can easily search and share Guru cards, making it easier to find
information and check how long ago it was verified. [28]

An obvious limitation of Guru is that the only tool it integrates with is Slack. Software de-
velopment teams share information over a wide range of digital tools so it’s unlikely Guru would
be able to construct a complete picture. Team members must also manually construct and verify
cards. In the context of software engineering this would be suitable for capturing some long lasting
information but may be too high an overhead to manage information about, typically short-lived,
bug-fixes and other small tasks.

3Aroma is not publicly available for me to test at time of writing

13

2.7 Discussion
As well as illuminating existing solutions to some problems related to this projects brief, this
background research has confirmed some of our assumptions and provided some insights into the
problem domain that will need to be considered going forward.

As anticipated we found that communication amongst modern Software development teams is
fragmented across a wide variety of tools. Email remains most researched communication tool
despite a decline in it’s use in favour for alternatives like Slack. Previous research confirms that
the corpus of communication spread across these tools can be mined for useful information. It
is possible to extract social networks, find experts on particular topics and find descriptions for
undocumented methods. Further research confirms that additional useful insights can be extracted
from source code by itself and when it’s used in conjunction with communication. Research has
been successful in establishing links between email and source code, disentangling slack conversa-
tions and discovering semantic topics from documents.

Section 2.6 details an investigation into several existing tools with goals related to this project.
These tools primarily just organised or highlighted information the user already had access to;
Kite Copilot finds documentation that could be easily Googled, Guru captures answers that were
posted in Slack channels. Despite this, these tools (excluding the unreleased Facebook aroma) had
each accumulated a large user-base. Furthermore, Sadowski et al. detail how Software Developers
use the easily accessible code-search tool in their IDE to find meta-information about the project
and guidance on API usage; information for which there is likely a better and more authoritative
source. There is clearly value in extracting surfacing this information in the right way at the right
time.

14

Chapter 3

Survey of Techniques

The primary contribution of the work is a ‘Workbench’ in which multiple different techniques for
the extraction of useful information can be applied to Emails, Slack Messages and Repositories of
Code. Building the workbench, the aim was to expose all hyper-parameters, options and choices so
that the workbench could serve as a useful tool for investigating how best to process these different
forms of communication.

Figure 3.1: The Experiment Workbench

The workbench is built from a series of tabs each corresponding to a different distinct experiment.
The experiments are detailed starting Section 3.2.

3.1 Project Setup

The project was built in Kotlin. Using a statically typed, Object-Orientated language helped con-
trol the complexity of connecting to multiple different services all relating to communication. All
Java libraries can be used in Kotlin, many of which were useful in the construction of the Work-
bench. Kotlin was chosen over Java because it’s more extensive set of functional programming
features was usefu in creating pipelines for processing data.

The UI was built using Kotlin Library TornadoFX. Another option was to build the front-end
separately to the bulk of the app and creating a web app. The styling and input options in Tor-

15

nadoFX are limited so this would have potentially led a better looking app final product that was
clearer to a new user. However, the goal of the project was to create a platform for scientific
experimentation not a product; how it looked wasn’t a priority as long as usability wasn’t an issue.
Furthermore, keeping everything in the same project prevented spending time building code to
help the front and back end communicate which wouldn’t serve the project brief.

3.1.1 Email
Email is the historic choice for communication in a software development project and it remains
popular (see Section 2.1.1). It was crucial to the success of the project that email communication
was investigated.

Many open source projects publish an archive of their mailing list online at https://www.mail-archive.
com/. We thought large projects with a long history of conversation would be useful in evaluating
techniques to extract useful information from email. To this end, we built small Python tool to
scrape and process these archives, extracting the useful information such as the content and time
sent. We also used the JavaMail library to build an adapter that could read emails from a mail
server. So the workbench could be directed at ongoing and non-archived projects.

Figure 3.2: How Email communication is retrieved

3.1.2 Slack
Of the programmers surveyed, Slack was the most frequently used communication service (see
Section 2.1.1). It was therefore important to investigate the barriers to extracting meaningful
semantic information from Slack channels.

We thought it was worth investing the time in building an adapter to the Slack API. There
were some data-sets of archived Software Development Slack Channels but maintaining an exter-
nal online backup of an active Work-space is against Slack’s terms of services so these were limited.
Building an adapter also enabled the workbench to be aimed at our own projects. The quality of
output from topic extraction and clustering is largely subjective; if we were familiar with the source
we would be in a better position to evaluate the output. There is a Slack API client available for
Java which was used to avoid processing the HTML responses directly. Classes from the Slack API
client package are only used within the Slack Adapter to reduce coupling.

16

https://www.mail-archive.com/
https://www.mail-archive.com/

Figure 3.3: Connection via the Slack API to work-space data

3.1.3 Git

Git is a vital source on information about a software engineering project and it’s contributors. Git
contains information about a repo as it currently stands, how it had evolved in the past, and how
a user is changing it. We used the JGit Library to build an adapter to git. We built functionality
like retrieving a matrix of co-edits between different files or retrieving a ‘bag-of-words’ built from
commit messages about a particular file that are used throughout the techniques in the workbench.

3.2 Experiment: Disentangling Slack Conversations

As discussed in Section 2.4.4 Slack channels often contain multiple distinct conversations. Although
it is normally clear for a human reading the chat to determine where one conversation begins and
one ends or to untangle an interleaved chat, this is more difficult for a computer to do automatically.

Chatterjee et al. reports success applying a Maximum entropy classifier to this problem. Us-
ing the workbench, one can apply this model to the problem and experiment with it’s variations.
Listed below are features extracted from pairs of messages. Boolean features are mapped to 1.0 if
true or 0.0 otherwise. Some features are the combination of a value calculated for each message
separately; there is an option exposed in the workbench to determine if these values are kept sep-
arate or combined in the output array.

Single Message Features
Feature Definition & Intuition
MENTION Does the message mention the other speaker
CUE_WORDS Does the message contain a cue word to indicate they are inter-

acting with another person. This could be a greeting ("hello,
hi" etc.), an answer ("yep", "no can do" etc.) or a thank you
("thanks", "ta!" etc.)

QUESTION The message contains a question, indicated by a question mark.
LONG The message is long (>10 words)
TECH_JARGON Is technical jargon used in the message
CODE_SNIPPET Presence of a code snippet in the message
EMOJI How many emoji are used in the message.
MUTUAL_REACTIONS Does the other speaker react to the message
PRONOUNS How many pronouns (you, he, she etc.) are there in the message.

These should indicate the speaker is talking about or to another
person.

Pair Only Features
Feature Definition & Intuition
TIME The Time between the two messages in seconds bucketed logarith-

mically. The longer between two messages the less likely they a a
part of the same conversation.

SPEAKER Do they have the same speaker?
SHARED_WORDS The number of words shared between two messages
TECH_JARGON Is technical jargon used in either message
MSGS_BETWEEN How many messages were sent between the two in question. This

feature captures a similar relationship to TIME but was intended
to capture when a conversation is interrupted.

17

The lists of cue words and technical jargon were constructed with a combination of publicly avail-
able data-sets and collecting suggestions from peers. Because the model is meant to be applicable
to any software development chat the technical jargon is made up of more generic words (commit,
bug etc.) and not language or project specific keywords.

Maximum entropy classifiers weight each feature independently. This makes the model quick
to train and simple to represent. This type of classifier perform supervised learning. To train the
mode, a data-set constructed for previous research of Slack Messages grouped by conversation was
used https://zenodo.org/record/3468559#.YJFUB7VKjZt. The messages were taken from the
public Software Development Slacks Clojurians, PythonDev, Elmlang and racket.

3.3 Experiment: Source Code Topic Clustering

As the developers of Mylin discovered the arrangement of files in a projects file system often
bears little resemblance to the semantic relationship between them (see Section 2.6.1). Files are
frequently edited together with files that are ‘far away’. Previous research has been undertaken
into extracting semantic topics from source code. We investigated how these methods, as well
modifications and extensions of our own extracted relationships between files.

3.3.1 Extracting Vocab from Source-Code

Human-human communication occurs in two places in source code, identifiers and comments. De-
pending on the project comments might be in natural language or be less structured. A vocabulary
for source code is extracted by finding matches for a series of Regex patterns stored in an instance
of the SourceCodeLangDetails class for the language. Through the workbench various options are
exposed so that the best variant of the process can be determined. These include if identifier
names should be split into separate words and whether capitalisation and punctuation should be
maintained.

This has the obvious downside of being limited to a finite set of languages that a SourceCode-
LangDetails instance is built for. A language agnostic approach is also built into the Workbench
for comparison. Only patterns for the generic assignment (x = ...) and function call (f(...)
are searched for and identifiers are broken apart at any uppercase or non-alphanumeric character.

3.3.2 Text Analysis for Topic Extraction

Encountered in the background research, was the use of Latent Semantic Analysis to extract topics
from a corpus of documents. LSI builds a small dimensional vector for both terms and documents
in the same vector space. The similarity of these vectors can then be used to cluster documents and
determine which terms best describe them. The workbench exposes many options to modify the
methodology found in background research. The rank that the matrix is reduced to as well as the
vector metric for calculating similarity can adjusted. The term-document matrix can be weighted
using just using the pure-counts, the tf-idf metric or alternative ‘Term Frequency / Proportional
Document Frequency’ (TF-PDF).

pdfc,n =
dc,n√∑

m dc,m ∗ dc,m
∗ exp(

|{d : tc ∈ d}|
|D|

)

Within these methods the ‘term frequency’ component can be be calculated several different ways
(see table). However, amongst other issues, LSI lacks a sound statistical foundation, there are
other models which seek to improve upon LSI and correct some issues with the model. Two of
these ‘refined‘ approaches were also implemented to compare the quality of output.

18

https://zenodo.org/record/3468559#.YJFUB7VKjZt

Pure Counts Simply the number of times the term appears in the document
Normalised Counts The pure count normalised by the number of times the term ap-

pears in the corpus. Helps tell words used frequently in a docu-
ment and genuinely popular words apart.

Boolean Only 1 or 0
Length Adjusted The pure count normalised by the length of the document. Longer

documents will natural have higer pure counts.
Log Scaled ln(1 + x)
Augmented 0.5 + 0.5 ∗ x/y where y is the biggest frequncy of any term in the

document

Probabilistic Latent Semantic Indexing

Instead of modeling the corpus using Linear Algebra, Probabilistic LSI aims to capture the semantic
content using probability. The intuition behind this approach is that, with the number of topics
is chosen as a hyper-parameter the probability of all co-occurrences can be modeled like so:

P (w, d) = P (d)
∑
z

P (z|d)P (w|z)

The actual values of P(z|d) and P(w|z) are learnt using the iterative Expectation-Maximisation
algorithm that finds a local minimum for the likelihood of the corpus. In this model documents and
terms aren’t matched with single topics, instead they can relate to multiple topics. This allows
the model to capture polysemous terms (multiple meanings) which standard LSI can’t handle.
Whereas LSI is deterministic, PLSI may generate different topic allocations on different iterations.
A limitation of the model is that the number of topics must be hand-chosen. However, LSI requires
the rank of the rank-reduced term-vector matrix to be chosen which still affects the final output
but far more opaquely.

Latent Dirichlet Allocation

Latent Dirichlet Allocation also models the corpus using probability over a fixed number of topics.
However the model is more complex, the probability values are tied to actual distributions.

ρk=1..K ∼ DirichletV (β) (Distribution of words in topic k)
θd=1..M ∼ DirichletK(α) (Distribution of topics in document d)

zd=1..M,w..Nd
∼ CategoricalK(θd) (Identity of topic of word w in document d)

wd=1..M,w..Nd
∼ CategoricalK(ρzdw) (Identity of word w in document d)

Learning the various distributions (the associated word probabilities, the topic of words, and the
topic mixture of each document) can be achieved via various methods. The workbench uses a
library which finds the values using a "Variational Bayes sampling" method.

3.4 Clustering
Several of the experiments require building clusters of objects based on some scoring metric. In
much of the literature authors simply refer to ‘clustering’ but this can be done in multiple ways.
The different clustering algorithms implemented and available in the workbench are as follows:

Greedy Clustering - To start, the first item is placed in a cluster by itself. For each subse-
quent element the scoring metric is computed between it and the already clustered items. The new
item is placed into the same cluster as the item that resulted in the best score. This is unless the
best score is less than some threshold in which case a new cluster is created.

‘No Going Back’ Clustering - Similar to greedy clustering but each new item can only be
placed in the previously built cluster. More so that greedy clustering the output is dependent of
the ordering of the input.

19

Agglomerative Single-Link - Each element is placed in it’s own cluster. The two clusters which
score highest are them combined. This is completed until all the clusters are arranged into a den-
drogram capturing the hierarchy between objects. ‘Single-Link’ refers to the fact that the score
between two clusters is calculated as the maximum score between any pair of elements.

Agglomerative Complete-Link - Similar to Agglomerative Single-Link. ‘Complete Link’ refers
to the fact the score between two clusters is calculated as the minimum value between any pair.

K-Means - K items are chosen as the original centre of K clusters and every items is assigned to
the it’s closest centre. The centre is then recomputed based on these assignments and the algorithm
iterates until the allocations converge. The K items chosen as the initial centres can have a big
impact on the final allocation so the quality of the clustering my vary between different runs.

Mean Shift - A random point is chosen, any items with certain radius are ‘covered’ by the
point. The point is moved toward the centre of the items it covers until the number of covered
items stops increasing. This is repeated until there are no points left uncovered. [29]

3.5 Experiment: Individual Grouping
As discussed in Section 2.4.2 when multiple different communication media are used in the same
project it’s common for the same person to appear under different aliases and emails. Discovering
that multiple users are actually the same person is non-trivial to automate. From Email, Git and
Slack both email addresses and usernames can be retrieved. Depending on the project and the
person the username might be their full name, part of it, or bear no resemblance at all. The
following tests are designed to be useful in determining whether two of these users are, infact, the
same person.

NAME_DIST If the Levenshtein distance between the two full names is under
some threshold

NAME_SUBSEQUENCE One of the full-names is a sub-sequence of the other
EMAIL_NAME One of the full-names is a sub-sequence of the others email
EMAIL_INITIAL An email contains one of the other persons initials and their other

name in full. The other name must be sufficiently long.
EMAIL_DIST The Levenshtein distance between the two emails is under a cer-

tain threshold and they both exceed a certain minimum length
EMAIL_IDENT Both whole email addresses (account & provider) are identical

All the thresholds and lengths are exposed through the workbench, as is the total number of
checks that needs to pass to build a match.

3.6 Experiment: Linking Source Code to other artifacts
Techniques have been proposed for establishing links between a source code artifacts (a class, a
method, a package) and the emails which talk about it (See Section 2.4.3). Unlike topic extraction
where artifacts under the same semantic umbrella are grouped together, here the goal is to link
documents specifically refering to each other. A tab in the workbench is devoted to experimenta-
tion with these techniques and how best to apply them. The basis for the methods applied comes
from the work of Bacchelli et al. however like with topic extraction this set of methods is expanded
with refined NLP models and hyper-parameters are exposed through the workbench. Furthermore,
the methods can also be applied to Slack Messages which are grouped together into conversations.

Although the goal is to establish links between specific documents and source code some tech-
niques require establishing a corpus vocabulary. Therefore when a query is launched the whole
corpus is indexed to extract useful information, then links are built for source code artifacts one
by one. Because techniques are oriented in this way one can search for links to a specific file, a
specific subsection of the repository or the whole code-base.

20

Figure 3.4: Links between emails and source code

Regex - Regex patterns are used to find what might be references to entities within the code base.
These are Camel Case or Snake Case compound words or single works surrounded by package,
language or path information is extracted. Similarly a list of entities is generated for source code
files. Where the same entity is found a link is established.

VSM - Using word frequency information a weighted term-document matrix is built for the corpus.
Using the fixed vocabulary of the corpus a vector can be built for source code documents and vec-
tor similarity metrics can be used to establish a link with documents. Using the fixed vocabulary
found in the communications corpus obviates some of the processing discussed in Section 3.3.1 but
there are still choices to be made about whether compound words should be split up etc. Further
options include how vector similarity is computed and how the matrix is weighted.

LSI - SVD is used to reduce the rank of the term-document matrix so that every term and
documents is represented by a n dimensional vector. Using the components of the decomposition
vectors can be created for new documents, the source code artifacts, which can then be used to
compute the similarity between documents and source code.

Let X be a term-document vector

SVD Decomposition: X = UΣV T

Let v be a new term vector

Reduced vector: ṽ = Σ−1k UT
k v

LDA - Using this probabilistic approach, once a model is built using a corpus one can obtain a
topic distribution for a new document. Similarly to the vector space based methods any terms
used in the new document not present in the original corpus will be ignored. This acts as a filter,
removing most of the language specific keywords and implementation content. The distributions
for each document in the corpus and the source code can be compared to build ranked links.

21

3.7 Testing & Ensuring Correctness
Testing is a pillar of good software development; during the development of the workbench tests
were used to ensure its correctness and robustness. The range of matrix, vector and text operations
used as a foundation for the NLP techniques as well as useful methods dealing with clusters and
http requests that are used throughout the workbench, were abstracted to a utilities package to
prevent duplication. A suite of unit tests could be written for each.

Figure 3.5: Utils packages and corresponding test files

Scripts were also written to test the integration of the external services and ensure data could
be read from Git, Slack, and Email. So the rest of the app could be tested independently, mock
versions of all the services were created which implemented the same interfaces but read com-
munication from a local file. This had the additional benefit of enabling applying techniques to
communication which some specific property not found in the corpus of actual data.

One aspect that complicated testing was the fact that, because of the nature of the output it
was difficult to tell if the NLP techniques were being applied correctly, especially when they
generate different output on every application. Good quality output was an indication that the
implementation was correct but distinguishing between a faulty application of the techniques and
them simply failing to capture whatever relationship they were targeting was a challenge. In some
cases the methods were simple enough that with a small enough input corpus one could follow
along by hand. PLSI and LDA are widely reported to be good topic models for formal prose, the
experiments here were to determine their usefulness in indexing source code. We therefore used a
data-set of news articles for testing, expecting good results to be generated. Both these techniques
were useful in the process of development, but were difficult to automate.

Figure 3.6: News Articles used to test topic models

22

Chapter 4

Application of Techniques

This chapter outlines results obtained from applying these techniques using the Workbench in-
troduced in the previous chapter. These results are then used to evaluate both the established
techniques and the proposed modifications and additions.

Much of the output of the techniques discussed aims to capture semantic information. Whilst
some quantitative analysis can be undertaken, one can’t but a decimal accuracy value everything.
To facilitate a full discussion the workbench was pointed at several projects the author had previ-
ously worked on and were in a position to better comment on the output of. These included:

Veracity - A web app with a JavaScript/React front end and a Python/Flask back-end. 6 con-
tributors. Completed over a period of 3 months.

Burst My Bubble - A web app with a JavaScript/React front end and a Python/Flask and
Java back-end. 4 contributors. Completed over a period of 2 months.

This also has the benefit of facilitating a discussion on applying the techniques to a closed project
as opposed to an open-source repository.

Figure 4.1: The Workbench experimenting on ‘Veracity’

23

4.1 Message Untangling

4.1.1 Training and Evaluating
Using a data set of annotated message pairs from Software Development Slacks, the LR model
can be trained and evaluated to see how well it captures the relationship. A high level of accu-
racy was achieved, with several configurations generating models that correctly paired messages
over 90% of the time. The best configuration was using features [TIME, SPEAKER, MENTION,
CUE_WORDS, LONG, SHARED_WORDS, CODE_SNIPPED, MSGS_INBETWEEN, REAC-
TIONS] and not splitting up message features. This achieved an accuracy of 91.8%.

Figure 4.2: The Average Accuracy achieved when a specific feature is turned off

Unsurprisingly the most useful feature by a significant margin was the time between the two
messages. However, as discussed by Chatterjee et al. the amount of time between messages varies
between different services and different domains. If time was not available as a feature the best accu-
racy achieved was 71.4% by features [SPEAKER, MENTION, QUESTION, MSGS_INBETWEEN,
REACTIONS] also not separated. Neither configuration includes the full set of features which sug-
gests some may have a detrimental impact on performance. However, for every individual features
the average accuracy across all sets including it was higher than the average from excluding it.

The goal is that the model generalises to any Slack with a software development focus. To in-
vestigate this property experiments were conducted where messages from one Slack were withheld
at training time. These models were then evaluated against the unseen Slack. The high level of
accuracy was maintained.

Withheld Corpus Clojurians Elmlang Beginners Elmlang General PythonDev Racket
Accuracy 89% 87% 88% 92% 88%

An interactive dashboard to explore the data further is available at https://message-dissentangle.
herokuapp.com/ 1

1The Web-App may take a couple of minutes to load

24

https://message-dissentangle.herokuapp.com/
https://message-dissentangle.herokuapp.com/

4.1.2 Applying to Author’s Projects
The best model found in the previous Section was applied to author’s real projects to see if the
high accuracy could be recreated. As well as pairing up messages they needed to be grouped into
conversations. Two options were experimented with:

• Using the binary class output which would be either 0 or 1

• Using the numerical output of the model which would be some unbounded real number

In both cases the forms of clustering that made sense to test were ‘Greedy’ and ‘No way back’ (see
Section 3.4). In the process of building conversations not all message pairs were considered. Intu-
itively, the further two messages are apart the less likely they are relating to each other; potential
pairs were built from messages that occurred within a sliding window of 30 messages.

Figure 4.3: Messages from Veracity Slack alongside class predictions

When a Slack is used more informally the distinction between conversations can be unclear. How-
ever, even when taking the strict notion that any change of topic represents a new conversation
the best logistic regression configuration predicts the right class 68% of the time (from a sample
of 250 messages from both projects).

The binary class output with greedy clustering let to some overly long conversations; one erro-
neous prediction would fuse together two unrelated conversations. Using ‘No way back’ clustering
and abandoning clusters once a message which didn’t fit occurred performed better. There were
less overly large clusters and only a few instances where conversations were split into multiple
clusters. The best output came from using ‘No Way Back’ clustering and the real number output
of the model, here low value positive predictions could be discounted largely resolving the problem
of overly large clusters. There were a few conversations that were split into parts but this was
deemed to be preferable to grouping unrelated content.

Figure 4.4: Part of a Conversation built using class prediction grouping

One difference between these projects and the open-source projects the model was trained on that
may have influenced results is the number of participants. In a the larger Slacks different conver-
sations were almost always were had by different people and overlapped. With a smaller group of
participants it was more a question of determining whether two messages from the same person
were on distinct topics.

25

Overall the techniques for building conversations achieved moderate success in capturing the con-
versations in the private projects. The model achieved a lower, but still high, level of accuracy
when applied to the author’s projects instead of the training data. When rebuilding these pairs
into conversations, groups that were made up of multiple distinct dialogues were largely avoided
but some real conversations were split in two.

4.2 Topic Extraction

4.2.1 Capturing Co-Edit Behaviour

One hope in pulling out topics of semantically related artifacts is that this information is useful
in suggesting files that a developer, who has modified some files, might modify next. To evaluate
success in this aim the topics pulled out of the code-base can be compared with a co-edit count
matrix from Git. This data can obviously be impacted by commit pattern of the repository’s
contributors. Smaller commits lead to lower rates of co-editing, some teams use feature branching
whereas others consistently integrate changes.

The commit history of repositories was read to build a co-edit matrix. This provided a metric
of similarity between each file which could be used by a clustering algorithm. To determine the
similarity between this clustering and one built using the natural language content the following
metrics were used:

Let C be a set of classes (true clusters) and K be a set of clusters

homogeneity = 1− H(C|K)

H(C)

completeness = 1− H(K|C)

H(K)

Let nck be the number of samples labelled c in cluster k

H(C|K) = −
∑
ck

nck
N
log(

nck
nk

)

These metrics are combined by the v-score

v =
(1 + β) ∗ homogeneity ∗ completeness
β ∗ homogeneity + completeness

The V-Measure ranges from 1 to 0 with 1 being a perfect result.

There was no meaningful order to files or concept of a mean file so K-Means, Mean-Shift and
No-Way-Back weren’t valid options to generate the target clusters. Under Greedy Clustering core
files that were edited with a high proportion of commits led to massively uneven output (see Figure
4.5). The only usable clusters came from using Agglomerative Complete-Link clustering and parti-
tioning the output dendrogram. Because these were acting as the ‘true’ clustering labels a specific
configuration needed to be chosen. This was somewhat arbitrary, but to prevent overly larger or
overly sparse groups the number of edits chosen was the lowest value where the biggest cluster
contained no more that 25% of the files. For Veracity this turned out to only be 1.2 Because this
output still contained many clusters of size 1, β = 0.5 was used in the calculation of the v score so
that homogeneity was valued more.

Figure 4.5: Greedy Clustering Applied to Veracity Co-Edit Data

2BMB was smaller and divided between many repositories so there was insufficient data test against it.

26

Vector Space Models

As a starting place for the investigation VSM was applied so see what kind of output was produced
without applying the more sophisticated techniques below. The term vectors generated needed to
be clustered similarly to how the co-edit data was.

However, no matter what algorithm was chosen and how it was configured the output was consis-
tently poor. The output was either trivially homogeneous, because the clusters output were largely
singular, or trivially complete because they were very large. The highest V-Measure obtained was
≈ 0.3

Latent Semantic Indexing

Applying LSI to the problem exposed the same range of options as VSM with the addition of the
reduced rank. The inital configuration was that described by Kuhn et al..

• Using the tf-idf metric to weight the matrix. Calculating term-frequency using the normalised
metric

• Reducing the matrix rank to 10. Values in the range 20-50 were reported to work well but
the test projects were small in scope.

• Using cosine-similarity and greedy clustering to build the topic clusters with an initial thresh-
old of 0.5.

Experimenting with the rank and threshold, yielded the following results:

Figure 4.6: How V-Measure is affected by Rank and Greedy Threshold

The best output achieved a V-Measure of 0.8073 with Rank 30 and threshold 0.5. Experiments were
also conducted with the other forms of clustering (see Figure 4.7) but this remained the best result.

27

Figure 4.7: V-Measure under K-Means (Top) and Mean-Shift (Bottom) Clustering

Probabilistic Latent Semantic Indexing

A key difference with PLSI influenced how results were obtained. Each document is represented
by a mixture of topics not just assigned one. For the purposes of evaluation each file was put in a
cluster based on the topic it was most strongly associated with.

Figure 4.8: V-Measure achieved by PLSI with various topic values

The best result was 0.8248 achieved using 25 topics. This is unsurprising as 25 is also the number
of clusters produced from the co-edit data.

28

Latent Dirichlet Allocation

LDA also outputs a topic distribution instead of a singular assignment. The same steps as with
PLSI were taken to evaluate the output. The following displays the V-Measure recorded for as the
number of topics is varied.

Figure 4.9: V-Measure achieved by LDA with various topic values

The best result was 0.8421 achieved using 25 topics. Again the same value as the number of co-
edit clusters. This relationships is problematic; ideally techniques would generalize to any project,
being able to generate a good match for the pattern of editing isn’t very useful if it can be done
when that data is already available. Perhaps an investigation involving a wider range of projects
could discover a heuristic based on the size of the project for finding a good configuration.

4.2.2 Aiding Understanding

An alternative use of topic extraction is to aid in understanding a project. Artifacts are meant
to be grouped together along semantic, not functional lines. If the topics produced are meaning-
ful and the words chosen to describe them accurate they could serve as a useful tool to a developer.

Throughout the investigation a certain configuration for generating vocab from source code proved
to be most effective. Without removing case and punctuation multiple topics would appear de-
scribed by effectively the same words. A similar division would occur unless identifiers that were
compound words were split apart. As one might expect, using the language specific patterns to
extract a vocabulary from source code performed better than the language agnostic option.

Figure 4.10: Best Configuration of Source Code Vocab Generation Options

One consistent issue was the influence of widespread library use. In both ‘Veracity’ and ‘Burst
My Bubble’ the React library is used in a large number, but crucially, not all, of the files. In the
models where documents are represented by a mixture of topics it was common that UI artifacts
would be be significantly made up of a topic represented by React identifiers such as ‘Grid’ and
‘spacing’. Like the language specific set of regex patterns needed to extract vocabulary from source
code, the techniques could be updated to also filter out library keywords. Whilst their presence
does limit usefulness of output this would massively limit the flexibility of the workbench.

29

Vector Space Modelling

The starting place of the investigation was seeing what kind of output could be generated without
applying the more complex NLP Techniques Discussed below. Unlike LSI term and document
vectors were of a different dimension under basic Vector Space modelling, so they couldn’t be
compared directly. Once clusters were built words to describe them were chosen by finding the
term with the highest sum across the vectors.

Figure 4.11: Sparse output generated by VSM Topic Extraction

Regardless of clustering algorithm or the value of other parameters this approach consistently gen-
erated weak output. Under K-Means clustering the output groups were severely unbalanced and
under the remaining algorithms (detailed in Section 3.4) the output was sparse. However, some of
the more populated clusters were were partially made up of semantically related files and described
by some reasonable terms.

DiagramAnswer.js, FreeTextAnswer.js, Word-
CloudAnswer.js, MultipleChoiceAnswer.js, spec.js

explicit, answered, answer, repeat,
choice

Veracity - The is a clear link between the various files used to generate UI to output answers
and some of the words chosen
FreeTextResults.js, PinResults.js, Word-
CloudResults.js

pull, submissions, callback, pins, re-
sponses

Veracity - Some of the terms relate to all files but pins is just relevant to PinResults.js
ArticleReader.java, Pages.java, PersistentStor-
age.java, TextAnalyser.java

document, insert, add, feed

BMB - The terms capture how articles are read from rss feeds and added into storage

Latent Semantic Indexing

Of the three models LSI has both the most parameters to tweak the method and the most opaque
relationship between these parameters and the actual output itself. The starting point for the
investigation was the configuration described by Kuhn et al. and also used in Section 4.2.1.

Applied to Veracity this initial configuration grouped 97 of the files into one large cluster. As
the threshold and rank were adjusted, instead of evenly sized clusters, the output was frequently
made up of quite big and quite small topic groups (see Figure 4.12). The best results were with
a threshold of 0.6 and the initial value of 10 for the reduced rank, here clusters were a relatively
even size and some semantics appeared to have been captured. Some topics were described using
semantically related words like quizzes, room, year, new (quizzes are done in rooms and can be
created new in the app) or answer, respond, incorrect. There were also related files grouped to-
gether. One type of question available in quizzes involves drawing diagrams which are clustered
together by ML, much of the code to-do with this part of the app was clustered together despite
being split between the back and front end. Similarly from BMB files Pages.java (used to display
articles), ArticleReader.java and AzureAdapter.java (used to analyse articles) were all pulled to-
gether. However no clusters had both these properties.

All the other clustering algorithms described in 3.4 were applicable to this task with the exception
of ‘No Going Back’. The Agglomerative algorithms produced useless output when the dendrogram
was partitioned into clusters but the dendrogram itself was more useful. Figure 4.13 displays the
top portion of one built on Veracity. The tree is unbalanced; one can see clusters relating to small
parts of the application like rendering latex or building Word-Clouds that don’t branch off. The
dendrogram could be useful to a developer in understanding what the atomic parts of a projects
and how the fit together.

30

Figure 4.12: Example topics and sizes generated by LSI

Figure 4.13: Top potion of a dendrogram built on ‘Veracity’

Both distance based clustering algorithms produced poor output, consistently grouping the vast
majority of files into one cluster irrespective of rank, K-value, radius etc. One explanation for
this was that it was the result of all the term vector components being bounded because of the
weighting however the same behaviour was observed when using the pure-counts matrix.

Probabilistic Latent Semantic Indexing

The primary difference in applying PLSI instead of standard LSI is that the number of topics must
be chosen manually. A further difference is that each file is made up of a mixture of topics, not
just assigned to one. Immediately the output appeared to capture some semantic information,
Figure 4.14 displays topics described by semantically related words like styles & rgba and quiz,
question & responses. As well as the terms the output also included the files most represented by
that topic. In some cases these were strongly related files with a clear link to the term, however,
sometimes the output seemed more random.

Figure 4.14: Example output from PLSI

One topic generated from ‘Veracity’ was described with terms: test, shallow, expect, describe,
display and was most represented by Sidebar.js which renders the Web-Apps sidebar, vectorize.py

31

which prepares png images for ML analysis and LiveResults.js which displays the responses to a
quiz.

Initially 50 iterations of the expectation-maximisation algorithm were used to optimize the model.
This was suggested as a reasonable value and increasing it didn’t have a noticeable impact on the
quality of output [30].

Latent Dirichlet Allocation

From the first application of the technique with it’s default configuration the topic descriptions
output to the workbench were made up of semantically related words. The topics headings were
also things relevant to the project; words like quiz, answer, correct frequently appeared in the
output for Veracity and feed, article, category, reader for BMB. Latent Dirichlet Allocation Also
requires choosing a fixed number of topics. Intuitively, the ideal number of topics depended on the
size of the project. As the number of topics approached the number of files the topic distribution
the model captured approached one-topic per document.

Figure 4.15: Example Topic Descriptions Generated by LDA

Figure 4.16: Sparse Topic Contributions when 100 Topics are used

The right numbers of topics for Veracity, which is made up of around 150 files of code, was about
10-20. The smaller BMB needed only 5-10. One component of Veracity is a set of tools to perform
clustering by a variety of methods on hand-drawn images. When the number of topics was set to
10 one was described by the Words (cluster, model, images, image, similarities). Similarly out of
20 topics one was described by (quiz, question, responses, add, response).

Cluster Topic Top 5 Files by probability of belonging to cluster
Veracity Image Clustering cluster.py - 0.99, aglo_cluster.py - 0.98, db_scan_clustering.py -

0.93, mean_shift_clustering.py - 0.85, vectorize.py - 0.77
Veracity Question and Re-
sponse

quiz_model_test.py - 0.79, aglo_cluster.py - 0.98, models.py -
0.67, quiz_api_test.py - 0.43, Question.js - 0.43

32

4.3 Individual Grouping

The intuition that there would be a need for a method to automatically group together users who
were, in fact, the same individual proved correct in these projects. Despite having only 6 direct
contributors there were around 40 accounts across Email, Git and Slack for the Veracity project.
Similarly there were 15 accounts from the 4 contributors to Burst My Bubble. In several instances
the same person appeared multiple times under different aliases in the same service.

Figure 4.17: Unsorted users and organised individuals

It was considered worse to group two individuals together that aren’t the same person than the
opposite because this could lead to communication or work belonging to one person being reported
as someone else’s. Everyone was grouped together correctly from BMB. Applied to the Veracity
project the checks achieved a moderate level of success. After some tweaking of thresholds the best
results were achieved by requiring two checks to pass. No users were incorrectly grouped together,
two individuals were split into two clusters. This was in spite of the fact full names and partial
names were used as well as user-ids. One failure that emerged during the application of the process
to real users was nicknames. As humans we know ‘Richard’ and ‘Dick’ are the same person but
these names have limited textual similarity.

4.4 Linking Source Code to other Artifacts

Despite their relatively short duration, a reasonable volume of Email and Slack communication
was produced during these projects. Approximately 3000 Slack messages and 300 emails were
sent over the duration of Veracity. One might want to search through all this communication to
find documents relevant to specific parts of the source code. This could be useful in discovering
who had worked on the code, when it was worked on and why certain decisions were made. An
investigation was undertaken, applying the various techniques for establishing links introduced in
Section 3.6 to the author’s projects to evaluate the quality of the links built.

Attempting to establish links with Slack Conversations had the added complication of first build-
ing the conversations out of individual messages. Sections 3.3 and 4.2 discuss the best method
discovered for doing this.

Regex Based Linking

Following standard practice JavaScript files preset in ‘Veracity’ and ‘BurstMyBubble’ used camel
case for identifiers. However this also meant that Python files in these repos used snake case. Be-
fore this technique was applied the set of Regex patterns was extended to look for uses of snake case.

Despite being the most simple method, Bacchelli et al. reported having the best results applying
lightweight regex based techniques. However this wasn’t replicated in this investigation. Across
the whole corpus of communication this technique consistently generated very few (<10) links.

33

Looking at the communication there were plenty of references to entities within the code-base but
few of them used the proper names. Mostly parts of the app were referred to more informally (see
Figure 4.18). This could be a product of the smaller group size working on these projects, the
project domain (quizzes and news articles are encountered in everyday life), or the people involved.
Either way the success reported by Bacchelli et al. didn’t generalize.

Figure 4.18: Messages from Veracity Slack talking about parts of the app

Vector Space Modelling & Latent Semantic Indexing

Instead of establishing (or not establishing) links between files and documents, under the Vector
Space and Latent Semantic Indexing models a way of determining the similarity of every document
and source code file is established. Some cut off point can then be chosen to determine artifacts
which will be considered related.

After applying these techniques to the communication documents and source code files the output
contained lots of files with very high similarity scores. However these top results were populated
with links to config files, style files and other parts of the code-base that were either auto-generated
or weren’t really touched during development. What links were established with other files weren’t
between artifacts that were actually related. Applying the technique to the Veracity Slack one link
with a sim score of 0.9999 was between file ControlPanel.js (which controls UI used by the quiz
host) and a message coordinating the time and location of a project meeting.

Experimenting with a range of values for SVD rank, matrix weighting and the other parame-
ters exposed through the workbench failed to have any significant impact on the quality of output.

Figure 4.19: High Scoring links established using LSI

34

Latent Dirichlet Allocation

LDA also produced ranked links between Source Code and communication artifacts. When first
applying this technique to the problem the output initially seemed promising. From the Veracity
project the highest ranking link was between a related part of the source code and conversation.
However the following link related the same conversation and an irrelevant file and the links that
followed were similarly poor.

Figure 4.20: High Scoring links with the same conversation established using LDA

Further experimentation with the number of topics and optimisation iterations used by LDA to
build it’s topic model failed to produce useful links.

The nature of these projects leads to some potential explanations for this output and the lacks of
success when compared to the results of Bacchelli et al.. Only terms which appear in the corpus
of communication can contribute to the term vector built for source code documents. Whilst the
volume of communication isn’t insignificant it is smaller than what would be expected for a long
running open source project. Only 523 unique terms occur across the entire Veracity conversation
history. Figure 4.21 displays part of the sparse tf-idf vectors generated for a portion of the code-
base. Additionally, the informality of communication referenced in the previous section my have
an impact here. Although using the precise names for entities the techniques wouldn’t be able to
handle relative references such as "The thing Joe’s working on" or "The bug I spoke to you about
earlier".

Figure 4.21: Sparsely populated tf-idf vectors

35

Chapter 5

Summary of Results

The previous Chapters detail how the various techniques for semantic extraction work and some
quantitative evaluation as well an investigation applying them to a selection of the author’s projects
to evaluate the more subjective aspects. What follows is a summary of the insights discovered:

Source Code Topic Extraction

One direction of investigation was grouping files together based on their natural language content
and extracting the terms that most represented these groups. This was done by attempting to
model the corpus using Vector Space Modelling, Latent Semantic Indexing, Probabilistic LSI and
Latent Dirchlet Allocation.

One idea was that these models could produce groups which captured the pattern of co-editing
present in Git histories. The techniques described were able to build clusters which strongly
mimicked the co-edit data. The groupings were compared using a V-Measure weighted to value
homogeneity and a results in excess of 0.82 were achieved. A limitation, however, was that there
was no ‘one size fits all’ configuration to get the best output from the NLP techniques; this was
dependent on the project the techniques were applied too.

Another idea was that these techniques would be useful in capturing the semantic topics present in
a repository and providing descriptions that could be useful in understanding a code-base. Applied
to the author’s projects each subsequent model produced a better quality of output, groups that
were made up of semantically related files and described by terms indicative of their content. Even
under the best model however some output didn’t appear sensible.

Disentangling Slack Messages

Extracting each distinct conversation from a Software Development Related Slack is non-trivial to
automate. Using a Logistic Regression Model, an annotated data-set of messages and a wide set
of features to choose from, the relationship between pairs of messages that form part of the same
conversation was modelled. The best configuration achieved an accuracy of 91.8% on a partition
of the training data-set held back for evaluation. The features which proved most useful were,
understandably, those concerned with the time between the two messages. Without access to time
the model’s best performance was only 71.4% accuracy.

This success somewhat generalised to the author’s projects. The actual pairing together of mes-
sages from one project was accurate 68% of the time. When it came to actually building these
messages into conversations the best results were achieved using the value output of the model and
using a form of clustering in which messages were grouped together in the order they arrived.

36

Individual Grouping

Across various tools used in development the same individuals can appear under multiple aliases,
emails and accounts. It is normally easy for a human to group these together but this is more diffi-
cult to do automatically. A series of textual checks are applied onto pairs of identifiers to produce a
similarity score which is then clustered to attempt to build groups which reflect real life individuals.

A set of values and thresholds was found that could group group together users without mak-
ing any false-positive errors. The only false-negatives came emerged from relationships between
identifiers that were purely semantic like nicknames.

Linking Source Code to Other Artifacts

Out of a large corpus of communication it is difficult for a person to easily identify artifacts re-
lating to a particular part of the source code. An attempt to automatically build these links was
investigated using a variety of methods.

Applied to the authors own projects the linking process proved largely unsuccessful. Lightweight
Regex-Based techniques failed because they relied on developers communicating more formally
than they actually did. Group members, who were dealing with very ‘everyday’ problem domains
didn’t need to use file paths and precise class names to be understood. The more sophisticated
natural language based techniques failed to capture the semantics of the artifacts and generated
high scoring associations between unrelated documents and files.

37

Chapter 6

Prototype Tool

One motivation in exploring techniques for the automatic extraction of semantic information from
software development artifacts is that these techniques could be used to build useful virtual tools
to assist a programmer whilst working. One idea was to build a virtual assistant, somewhat akin
to Alexa or Cortana. This would react to the developers interaction with the code-base and surface
insights and information deemed to be potentially useful. A prototype version of this assistant was
built and is shown being used alongside development work in Figure 6.1.

Figure 6.1: Links between emails and source code

The prototype displays insights like recommended communications to look at, which was an area
investigated in this project, as well as mocked insights not yet explored, identifying a specific issue
number being worked on, as a suggestion of future work. The tool demonstrates how information
from the communication services beyond the messages shared within could be surfaced in a useful
way. The borders round the portraits symbolise the person’s availability; information that could be
taken from Slack/Teams and then surfaced. The app also displays information like unread emails
and daily commits. The idea is that the app serves as an information hub whilst developing, surfac-
ing value contained within the range of services used and deep-linking to useful artifacts and people.

This prototype is built using the same system as the Workbench but for it to be a real usable
application some architectural changes would need to be made (see Figure 6.2). Instead of the
users local machine, ML processes would likely be applied externally with results communicated
over the internet. This would enable prevent the need to distribute ML models and perform the
expensive computation needed for some techniques on user’s machines. Furthermore indexes and
vocabularies generated from corpora could be stored to avoid costly re-computation.

38

Figure 6.2: Proposed Architecture for Virtual Assistant

39

Chapter 7

Ethical and Legal Issues

Throughout the project, research and work has been undertaken in an ethical and legal way.

Surveys

During the background research phase of the project, surveys were conducted to determine how
software development tools are used in Industry by modern Software Developers. Information was
included about how the data was to be used and who would have access to it. No private information
or identifiers for the participants were collected. The data is only reported in aggregate both in
this report and on the online interactive dashboard (https://serene-stream-63388.herokuapp.
com/).

Data-sets

Multiple data-sets are used in the project for model training or the evaluation of techniques. All
the data-sets used were publicly available and use for academic work was permitted. Some of these
files contained the names and email addresses of real people; care has been taken to not reproduce
any of these in the report.

Personal-Projects

The techniques described were applied to some of the author’s personal projects the results of
which are discussed this report. Permission was obtained from the projects other participants to
use their name and image and reproduce any communication sent as a part on the relevant project.

Privacy

The project involved building tools to read messages form various communication tools. Care was
taken to not build tools that would allow the Workbench to break privacy. The Slack-App the
Workbench is registered under needs to be invited to channels before it can read their history. The
mail portion of the app must be configured to read the mail of a specific recipient. There is no
potential for private communication using email or Slack direct messaging to be exposed.

40

https://serene-stream-63388.herokuapp.com/
https://serene-stream-63388.herokuapp.com/

Chapter 8

Conclusion

8.1 Contributions

The contributions of this work to the topic of ‘Mining Semantic Information from Software Devel-
opment Artifacts’ are as follows:

Survey - A survey of techniques for a variety of tasks under the banner of extracting useful se-
mantic information from artifacts relating to Software Development. The starting point for these
methods comes from background research detailed in Chapter 2 but modifications, extensions and
alternative methods are presented.

Workbench - A workbench that can be used to investigate the application of these techniques
to benchmark data-sets as well as real repositories. Adapters to connect to real email servers and
live Slack channels are built in. Full control is given to the user customise how the methods are
applied.

Figure 8.1: Mining Workbench on the grouping users together into individuals

Evaluation - An evaluation of both the starting point of the techniques and the extensions per-
formed using the workbench is presented. Both publicly available data-sets and some of the author’s
own projects are used to discuss both the quantitative success of various methods and the quality
of more subjective output. In several cases the modifications, extensions and alternative methods
proposed lead to a high quality of output.

41

8.2 Future Work
The subject of this project is quite open ended. This section outlines some directions for potential
future work building on the discoveries outlined.

More Communication Services - Communication isn’t just limited to the services that are
explored in this project. Slack and Email were the focus because they were the most popular,
but one direction of future research would be to investigate other services and see if they have
any unique properties that impact how semantic information is extracted. This could be other
text services like Microsoft Teams, but a significant number of survey participants reported using
Video Conferencing as a part of developer communication. There would likely be numerous obsta-
cles to extracting useful semantic information from a recorded Zoom meeting, but also lots of value.

Non Communication Artifacts - There are also various types of non-communication based
artifacts associated with development that would contain semantic information. An area of future
research would be to investigate the likes of issue trackers, documentation, dashboards etc. for
techniques of automatic extraction.

Development to the Assistant - One area of future work is to continue developing a digi-
tal assistant introduced in Chapter 6 which would use the techniques discussed and information
from integrated services to highlight useful information to a developer whilst programming. This
could allow for an interesting investigation into how the use of such a tool would impacts the
cognitive load placed on a programmer.

Performance - This project has focused on getting the best results from the techniques dis-
cussed. However some of these techniques require indexing large corpora of data or applying
iterative techniques that need to converge. It can take a long time for any output to be generated
or output of a decent quality. One direction of future research would be to investigate methods
of speeding up techniques or how the quality of output degrades when time-saving methods are
taken. Alternatively, one could look into performing incremental updates to indexed corpora so
there isn’t a need to recompute everything whenever new Slack Messages or Emails arrive.This
would be useful in building tools that could react quickly to a programmer whilst they’re coding.

42

Bibliography

[1] D. Helgesson, E. Engstrom, P. Runeson, and E. Bjarnason. Cognitive load drivers in large
scale software development. In 2019 IEEE/ACM 12th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE), pages 91–94, 2019. doi: 10.1109/
CHASE.2019.00030.

[2] SL. Pfleeger and JM. Atlee. Software engineering - theory and practice (4. ed.). Pearson
Education, 2009. ISBN 978-0-13-814181-3.

[3] VM. González and G. Mark. "constant, constant, multi-tasking craziness": Managing multiple
working spheres. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’04, page 113–120, New York, NY, USA, 2004. Association for Computing
Machinery. ISBN 1581137028. doi: 10.1145/985692.985707. URL https://doi.org/10.
1145/985692.985707.

[4] The value of slack for software developers. [Online]. Avail-
able from: https://slack.com/intl/en-gb/resources/why-use-slack/
the-value-of-slack-for-software-developers, . [Accessed 11th January 2021].

[5] B. Lin, A. Zagalsky, MA. Storey, and A. Serebrenik. Why developers are slacking off: Under-
standing how software teams use slack. pages 333–336, 02 2016. doi: 10.1145/2818052.2869117.

[6] V. Stray, N. B. Moe, and M. Noroozi. Slack me if you can! using enterprise social networking
tools in virtual agile teams. In 2019 ACM/IEEE 14th International Conference on Global
Software Engineering (ICGSE), pages 111–121, 2019. doi: 10.1109/ICGSE.2019.00031.

[7] The case for letting people work from home forever. [Online]. Available from: https://www.
wired.com/story/the-case-for-letting-people-work-from-home-forever/. [Accessed
12th February 2021].

[8] What’s next for remote work: An analysis of 2,000 tasks, 800 jobs, and nine countries. [On-
line]. Available from: https://www.mckinsey.com/featured-insights/future-of-work/
whats-next-for-remote-work-an-analysis-of-2000-tasks-800-jobs-and-nine-countries.
[Accessed 12th February 2021].

[9] C. Sadowski, KT. Stolee, and S. Elbaum. How developers search for code: A case study. In
Joint Meeting of the European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering (ESEC/FSE), 1600 Amphitheatre Parkway, 2015.

[10] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering traceability
links between code and documentation. IEEE Transactions on Software Engineering, 28(10):
970–983, 2002. doi: 10.1109/TSE.2002.1041053.

[11] Adrian Kuhn, Stephane Ducasse, and Tudor Girba. Semantic clustering: Identifying topics
in source code. Information and Software Technology, 49(3):230–243, 2007. ISSN 0950-5849.
doi: https://doi.org/10.1016/j.infsof.2006.10.017. URL https://www.sciencedirect.com/
science/article/pii/S0950584906001820. 12th Working Conference on Reverse Engineer-
ing.

[12] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email social net-
works. In Proceedings of the 2006 International Workshop on Mining Software Repositories,

43

https://doi.org/10.1145/985692.985707
https://doi.org/10.1145/985692.985707
https://slack.com/intl/en-gb/resources/why-use-slack/the-value-of-slack-for-software-developers
https://slack.com/intl/en-gb/resources/why-use-slack/the-value-of-slack-for-software-developers
https://www.wired.com/story/the-case-for-letting-people-work-from-home-forever/
https://www.wired.com/story/the-case-for-letting-people-work-from-home-forever/
https://www.mckinsey.com/featured-insights/future-of-work/whats-next-for-remote-work-an-analysis-of-2000-tasks-800-jobs-and-nine-countries
https://www.mckinsey.com/featured-insights/future-of-work/whats-next-for-remote-work-an-analysis-of-2000-tasks-800-jobs-and-nine-countries
https://www.sciencedirect.com/science/article/pii/S0950584906001820
https://www.sciencedirect.com/science/article/pii/S0950584906001820

MSR ’06, page 137–143, New York, NY, USA, 2006. Association for Computing Machin-
ery. ISBN 1595933972. doi: 10.1145/1137983.1138016. URL https://doi.org/10.1145/
1137983.1138016.

[13] CS. Campbell PP. Maglio, A. Cozzi, and B. Dom. Expertise identification using email
communications. In Proceedings of the Twelfth International Conference on Information
and Knowledge Management, CIKM ’03, page 528–531, New York, NY, USA, 2003. Asso-
ciation for Computing Machinery. ISBN 1581137230. doi: 10.1145/956863.956965. URL
https://doi.org/10.1145/956863.956965.

[14] A. Bacchelli, M. Lanza, and R. Robbes. Linking E-Mails and Source Code Artifacts,
page 375–384. Association for Computing Machinery, New York, NY, USA, 2010. ISBN
9781605587196. URL https://doi.org/10.1145/1806799.1806855.

[15] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora. Mining source code
descriptions from developer communications. In 2012 20th IEEE International Conference on
Program Comprehension (ICPC), pages 63–72, 2012. doi: 10.1109/ICPC.2012.6240510.

[16] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N. A. Kraft. Exploratory study of
slack q a chats as a mining source for software engineering tools. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), pages 490–501, 2019. doi:
10.1109/MSR.2019.00075.

[17] M. Elsner and E. Charniak. You talking to me? a corpus and algorithm for conversa-
tion disentanglement. In Proceedings of ACL-08: HLT, pages 834–842, Columbus, Ohio,
June 2008. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/P08-1095.

[18] Arun Surendran, John Platt, and Erin Renshaw. Automatic discovery of personal topics to
organize email. 01 2005.

[19] JL. King and AJ. Ehrenberg. The productivity vampires. Information Systems Frontiers,
22(1):11–15, Feb 2020. ISSN 1572-9419. doi: 10.1007/s10796-019-09943-9. URL https:
//doi.org/10.1007/s10796-019-09943-9.

[20] FG. Paas. Training strategies for attaining transfer of problem-solving skill in statistics:
A cognitive-load approach. Journal of Educational Psychology, 84(4):429–434, 1992. doi:
10.1037/0022-0663.84.4.429. URL https://doi.org/10.1037/0022-0663.84.4.429.

[21] P. Lenberg, R. Feldt, and LG. Wallgren. Behavioral software engineering: A definition and
systematic literature review. Journal of Systems and Software, 107:15 – 37, 2015. ISSN 0164-
1212. doi: https://doi.org/10.1016/j.jss.2015.04.084. URL http://www.sciencedirect.com/
science/article/pii/S0164121215000989.

[22] M. Kersten and Gail C. GC. Murphy. Using task context to improve programmer produc-
tivity. In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, SIGSOFT ’06/FSE-14, page 1–11, New York, NY, USA, 2006. As-
sociation for Computing Machinery. ISBN 1595934685. doi: 10.1145/1181775.1181777. URL
https://doi.org/10.1145/1181775.1181777.

[23] Eclipse mylyn. [Online]. Available from: https://projects.eclipse.org/projects/mylyn.
[Accessed 26th December 2020].

[24] Kite for atom. [Online]. Available from: https://www.kite.com/integrations/
atom-editor/, . [Accessed 29rd December 2020].

[25] Kite copilot for python. [Online]. Available from: https://www.kite.com/copilot/, . [Ac-
cessed 29rd December 2020].

[26] Aroma: Using machine learning for code recommendation. [Online]. Available from: https:
//ai.facebook.com/blog/aroma-ml-for-code-recommendation/. [Accessed 2nd January
2021].

44

https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1145/956863.956965
https://doi.org/10.1145/1806799.1806855
https://www.aclweb.org/anthology/P08-1095
https://www.aclweb.org/anthology/P08-1095
https://doi.org/10.1007/s10796-019-09943-9
https://doi.org/10.1007/s10796-019-09943-9
https://doi.org/10.1037/0022-0663.84.4.429
http://www.sciencedirect.com/science/article/pii/S0164121215000989
http://www.sciencedirect.com/science/article/pii/S0164121215000989
https://doi.org/10.1145/1181775.1181777
https://projects.eclipse.org/projects/mylyn
https://www.kite.com/integrations/atom-editor/
https://www.kite.com/integrations/atom-editor/
https://www.kite.com/copilot/
https://ai.facebook.com/blog/aroma-ml-for-code-recommendation/
https://ai.facebook.com/blog/aroma-ml-for-code-recommendation/

[27] Guru | slack app dictionary. [Online]. Available from: https://docrevision.slack.com/
apps/A0FHVR2R0-guru, . [Accessed 11th January 2021].

[28] Guru. [Online]. Available from: https://www.getguru.com/. [Accessed 11th January 2021].

[29] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput.
Surv., 31(3):264–323, September 1999. ISSN 0360-0300. doi: 10.1145/331499.331504. URL
https://doi.org/10.1145/331499.331504.

[30] Java plsa. [Online]. Available from: https://github.com/chen0040/java-plsa. [Accessed
12th May 2021].

45

https://docrevision.slack.com/apps/A0FHVR2R0-guru
https://docrevision.slack.com/apps/A0FHVR2R0-guru
https://www.getguru.com/
https://doi.org/10.1145/331499.331504
https://github.com/chen0040/java-plsa

	Introduction
	Background
	How Software Developers Work
	How do Software Developers Communicate?
	How do Software Developers Find Code?

	Vector Space Based Indexing
	Basic Indexing
	What Constitutes a term?
	Weighting
	Latent Semantic Indexing

	Mining Source Code for Semantic Information
	Mining Digital Communication
	Social Dynamics in Communication
	Identifying Individuals
	Linking Emails to Source Code
	Disentangling Slack Conversations
	Clustering Emails

	Cognitive Load
	Cognitive Load Theory
	Cognitive Load in Software Development

	Existing Tools
	Mylyn (formerly Mylar)
	Kite and Kite Copilot
	Facebook Aroma
	Guru

	Discussion

	Survey of Techniques
	Project Setup
	Email
	Slack
	Git

	Experiment: Disentangling Slack Conversations
	Experiment: Source Code Topic Clustering
	Extracting Vocab from Source-Code
	Text Analysis for Topic Extraction

	Clustering
	Experiment: Individual Grouping
	Experiment: Linking Source Code to other artifacts
	Testing & Ensuring Correctness

	Application of Techniques
	Message Untangling
	Training and Evaluating
	Applying to Author's Projects

	Topic Extraction
	Capturing Co-Edit Behaviour
	Aiding Understanding

	Individual Grouping
	Linking Source Code to other Artifacts

	Summary of Results
	Prototype Tool
	Ethical and Legal Issues
	Conclusion
	Contributions
	Future Work

